Army Lockheed YO-3A in Vietnam A Technical Observer's Perspective

Adapted from a Presentation Delivered 2004

Photo: Will Holly Art Work Kurt Olney

Karl Forsstrom

Technical Operator (TO) Long Than North 3/71 – 8/71

The YO-3A Missions

- Perform After-curfew Night Surveillance of Rivers and Roads in Suspected Enemy Controlled Areas of South Vietnam
 - Report "Unusual" Activities to Ground Troops
 - Collect Data for Post-mission Intelligence Analysis
- Act as Real-time Forward Air Controller (FAC)
 - Direct Artillery at Identified & Cleared Targets
 - Direct Air Strikes at Identified Targets

Presentation Outline

YO-3A Mission Personnel

 Emphasis on Technical Observer (TO)

 YO-3A Mission Technology

 Detection²

A Day in a Life of a YO-3A Company

Intelligence Analysts (3)	Sleep Analyze Data & Prepare Nights' Missions	Free Time Free Time Brief Crew	Sleep Debrief Crews & Collect Data	
Tachnical	Sleep	Free Time	Sleep	
Observers (6)	Barrack Duty	Free Time Mission Prep	Fly Missions	
Pilots (12)	Sleep Administrative Tasks	Free Time Free Time Mission Prep	Sleep Fly Missions	
Contractor Representatives (4)	Sleep Support Aircraft Ma	Free Time intenance	Support Missions	
Crew Chiefs (6 - 8)	Sleep Aircraft Maintenance	Free Time Free Time Prepare A/C	Support Missions	
Avionics and Mission Equipment (4)		On Call		
060	0 0800 1000 1200 1400 Time) 1600 1800 200	00 2200 2400 0200 0400 0600	

Free Time & Mission Time

YO-3A Technical Observer (TO)

- Initially Trained as Airborne Sensor Specialist (MOS 17L) for Army OV-1 Mohawk Surveillance Aircraft
 - Aerial Navigation
 - Communication & Forward Air Controller
 - Sensor (Radar, IR, Photo) Operations

OV-1B Mohawk

Typical Missions

- River Reconnaissance
- Road Reconnaissance
- Coastal Reconnaissance
- Designated Area Search
- 4 5 Missions per Night per Operating Base
 - Early Evening: 2000 2300 hrs
 - Night: 2300 0200 hrs
 - Pre-Dawn: 0200 0500 hrs
 - Mission Duration: 2 3 Hours

Mission Example

Pre-flight Briefing

- Intelligence Analyst Outlines Search Area and Potential Targets based on Previous Night's Data and/or Information from Core Intelligence (J2)
- Pilot Receives Weather Updates, Radio Frequencies and Navigation Waypoints
- TO Marks/Reviews Mission Maps and Is Issued Crypto Sheet-of-the-Day

TO's Responsibilities

• Pre-takeoff

 Verify NVAP Functionality with On-ground Check (Look at Hanger Across Runway)

In-flight

- Assist Pilot with Navigation
- Coordinate Radio Communication with Ground Troops (Artillery) and Air Traffic Control
- Operate Mission Equipment (Night Viewing Aerial Periscope NVAP)
- Call in Potential Targets to Ground Troops
- **Direct Artillery or Air Strikes on Targets**

• Post-flight

- **Debrief Mission to Intelligence Analysts**
- Turn in Crypto Sheets

Sensor Fusion à la YO-3A

- Visual (Seeing)
 - **Right Eye in NVAP Ocular Bright Greenish Image**
 - Left Eye on Mission Map Dull Red Light from Cockpit Spotlight
- Vestibular (Inner Ear Balance)
 - Conflict between Gyro Stabilized NVAP and Rocking YO-3A (i.e., Pilot Trying to Navigate by Looking Out Side of Canopy)
- Tactile (Touch)
 - Right Hand on Joystick
 - Left Hand Trying to Fold Unwieldy Mission Map
- Aural (Hearing)
 - Constant Chatter between Pilot, TO and Ground
- Sensor Overload For Some Resulting in Vertigo and Air Sickness

The View from the Front Seat

Cabin Night Light

Left Eye

Right Eye

One TO's Observations

- Who's In Charge of the Mission?
 - Pilot Is Only the Sensor-platform Driver
 - TO Makes Value Judgments on Target's Importance
- Aerial Origami
 - Art of Folding Maps in Tight Quarters
- Flying from the Front Seat of a YO-3A
 - Most Pilots Insisted that the TOs Learn to Fly in Case of Emergencies
 - Short, Telescoping Control Stick
 - No Trim Control
- Confusing Air Force and Navy Personnel
 - "What Kind of Insignia Is that Pilot in the Front Seat of that Strange WWII Fighter Wearing?"
 - "Looks Like a Really Fast Plane."

YO-3A Mission Technologies

- Avoiding Detection
 - Stealth before Stealth Was a Popular Term
 - 10 Years Before Have Blue (Prototype Version of F-117 "Stealth Fighter")
- Enabling Detection
 - Night Vision Sensors
 - Years before "We Own the Night" became the Army's Mantra

Elements of Stealth

- Radar "Invisibility"
 - Shape (Controll A Provident Spikes)
 - Material (V. d. r Sbsorbing Material RAM)
 - Active Count rmeasures (Jamming, Ghosting, Phase-cancellation)
- The d) nvisibility" - Viding" Neat Sources
- RF Emission Corol ()
 - Frequency h ping
- Visual Masking
 - Shape
 - Camouflage Paint Patterns
- Acoustic Reduction
 - Engine Shielding
 - Belt-drive Reduction System
 - Modified Muffler
 - Custom-made Wooden Propeller

Night Viewing Technology

Electromagnetic Spectrum

Far IR 10 μm (thermal) FLIR

Near IR 4 µm (thermal) FLIR Visible Light 0.4 – 0.7 µm (reflective) Photographic, Conventional TV

Near IR 0.7 – 2 µm (reflective) NVAP

Image Intensification Technology

Gen 0 - Typically uses an S-1 photocathode with peak response in the blue-green region (with a photosensitivity of 60uA/Im). electrostatic inversion. and electron accel-eration to achieve gain. Consequently, Gen 0 tubes are characterized by the presence of geometric distortion and the active need for infared illumination.

Gen I - Typically uses an S-20 photocathode (with a photosensitivity of 180-200µA/Im). electrostatic inversion. and electron acceleration to achieve gain. Because of higher photosensitivity, Gen I was the first truly passive image intensifier. Gen I is characterized by . geometric distortion, perform-ance at low light levels and blooming.

Gen III - Uses gallium-arsenide for the photocathode and a microchannel plate for gain. The microchannel plate is also coated with an ion barrier film to increase tube life. Produces more than 800uA/lm in the 450 to 950 nanometer (near infared) region of the spectrum. Gen II Provides very good to excellent low-light-level performance, long tube life. Recent mil-spec tubes have no perceptible distortion.

100 X Gain

1000 X Gain

10,000 X Gain

40,000 X Gain

Night Viewing Aerial Periscope (NVAP)

- Light Intensification System (e.g., Starlight-scope) Sensitive in Optical and Near Infrared Portion of Electro-Magnetic Spectrum (Early Generation II)
 - <u>Not</u> a Forward Looking Infrared (FLIR) System with Cryogenically Cooled Sensor
 - Infrared Beacon Assist for Dark Nights
- Technical Observer Controlled NVAP Line-of-Sight (Azimuth and Elevation) via Joystick
 - Joystick Also Slaved Infrared Illuminator's Line-of-Sight to Match NVAP's Line-of-Sight
- NVAP Optics Gyro Stabilized
- Mono-Ocular Eyepiece to Focus Grainy, Greenish Monochrome Image from Fibre Optics Bundle

Generation II Night Vision Device

- Micro-channel Plate (MCP) Works As An Electron Amplifier and Is Placed Directly Behind the Photocathode.
 - Several Million Microscopic Hollow Glass Channels Fused Into a Disk
 - Each Channel, Approximately 0.0125 mm In Diameter, Is Coated With a Special Semiconductor Which Easily Liberates Electrons
 - A Single Electron Entering a Channel Initiates an Avalanche Process of Secondary Emission, Under Influence of an Applied Voltage, Freeing Hundreds of Electrons
 - These Electrons, Effectively Collimated by The Channel, Increase the Resolution of the Device

Micro-channel Plate (MCP)

Conclusions

- YO-3A Was a Unique and Successful Experiment Combining:
 - A Motivated Army Team with Embedded Civilian Contractor Support
 - A Visually and Acoustically Stealthy Aircraft
 - State-of-the-Art Night Vision Equipment